
Week 3 - Monday



 What did we talk about last time?
 Requirements documents







 Traditional processes depend on requirements being right
 The following characteristics should be checked:
 Clarity: Are the requirements clear (testable)?
 Consistency: Are there any contradictions?
 Completeness: Is everything covered in sufficient detail?
 Correctness: Do the requirements reflect what stakeholders want?
 Well-formedness: Are the requirements formatted correctly? 

(Uniquely labeled atomic requirements using "must" and "shall")
 Reviews are the process of having various people check the 

requirements for these characteristics



 Requirements are always under scrutiny in agile processes
 Someone is always updating and prioritizing the product backlog
 Requirements are checked at the end of each sprint

 If the current version of the product behaves incorrectly, it 
might mean that the requirements are incorrect

 Unfortunately, you need someone who can recognize the 
errors at the sprint reviews



 Projects start with a product mission statement giving 
business requirements

 Requirements analysis is the process of gathering stakeholder 
needs and using them to turn the mission statement into a list 
of requirements specifications

 The result is a document called a software requirements 
specification (SRS)
 This is what you've got to create for Project 1



1. Introduction
A. Product Vision
B. Project Scope
C. Stakeholders
D. Design and Implementation Constraints

2. Functional Requirements
A. Product Behavior
B. User Interfaces
C. System Interface
D. Data Requirements

3. Non-Functional Requirements
4. Other Requirements
5. Glossary



1. Introduction
A. Purpose of Document
B. Intended Audience
C. Scope
D. Definitions and Terminology

2. Overall Description
A. Product Functions
B. User Characteristics
C. Dependencies

3. Interfaces
A. User interfaces
B. Hardware interfaces
C. Software interfaces
D. Communications interfaces

4. Functional Requirements
5. Non-functional Requirements



 The mission statement or other high-level needs are used to 
writer big user stories

 Working with stakeholders, the team refines sprintable stories 
into operational-level and physical-level requirements

 The product owner has the responsibility to update the 
product backlog as the product evolves



 Most industries call requirements analysis "product design"
 A lot of other industries design things, but software developers tend not to use 

the same tools they do
 Maybe just because we don't call it product design

 It might be more helpful to think about requirements analysis in terms of 
design
 Many designs are possible
 It's smart to come up with several alternatives to see which ones people like best
 Designing is a more active mindset than gathering requirements

 Like other problem-solving activities, requirements analysis should involve:
 Trial and error
 Iteration
 Recognition that there isn't a unique solution



 When software engineers say modeling, they usually mean 
drawing diagrams

 Requirements modeling is making representations 
(diagrams) that help you understand your requirements

 Both traditional and agile processes use models
 The Unified Modeling Language (UML) is the most common 

set of standards for representing such models
 Some developers use models extensively, and others use 

them rarely



Model Show Typical UML Diagram

Use Case 
Models

A product interacting with its environment, 
often actors who take on roles

Use Case Diagram

Conceptual 
Models

Relationships between entities Class Diagram

State Diagrams
The states a product can be in and the 
transitions between those states

State Diagram

Decision Trees 
and Tables

What a product should do under various 
conditions

Activity Diagram

Data Flow 
Diagrams

How data enters, is processed, and leaves 
the product

Activity Diagram or 
Sequence Diagram





 At both the requirements stage and the design stage, 
modeling can be useful

 Modeling mostly means drawing boxes and arrows
 We want high-level descriptions of:
 What the thing is supposed to do
 What parts it's composed of
 How it does what it does



 Models leave out details
 Models are useful to help understand a complex system
 During requirements engineering, models clarify what an existing system 

does
 Or models could be used to plan out a new system

 Models can represent different perspectives of a system:
 External: the context of a system
 Interaction: the interactions within the system or between it and the 

outside
 Structural: organization of a system
 Behavior: how the system responds to events



 The Unified Modeling Language (UML) is an international 
standard for graphical models of software systems

 A few useful kinds of diagrams:
 Activity diagrams
 Use case diagrams
 Sequence diagrams
 State diagrams

 Class diagrams are important enough that we'll talk about 
them in greater detail



 Activity diagrams show the workflow of 
actions that a system takes

 XKCD of an activity diagram for writing good 
code
 From: https://xkcd.com/844/

 Formally:
 Rounded rectangles represent actions
 Diamonds represent decisions
 Bars represent starting or ending concurrent 

activities
 A black circle represents the start
 An encircled black circle represents the end

https://xkcd.com/844/




 Data-driven models show how input data is processed to generate 
output data

 The following is an activity diagram that shows how blood sugar 
data is processed by a system to deliver the right amount of 
insulin



 Use case diagrams show 
relationships between users of a 
system and different use cases 
where the user is involved

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:Use_case_restaurant_model.svg


 Sequence diagrams show system 
object interactions over time

 These messages are visualized as 
arrows
 Solid arrow heads are synchronous 

messages
 Open arrow heads are 

asynchronous messages
 Dashed lines represent replies

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:CheckEmail.svg


 State diagrams are the UML 
generalization of finite state 
automata from discrete math

 They describe a series of states 
that a system can be in and how 
transitions between those states 
happen

 Example from uml-diagrams.org:

https://www.uml-diagrams.org/state-machine-diagrams.html#behavioral-state-machine


 Event-driven modeling is 
another kind of 
behavioral modeling 
that focuses on how a 
system responds to 
events rather than on 
processing a stream of 
data

 Here's a state diagram 
for a microwave oven 
based on various outside 
events





 Structural models show how a system is organized in terms of 
its components and their relationships

 UML class diagrams are used for structural models, but they 
can be used in many different ways:
 Relationships
 Generalization
 Aggregation



 Class diagrams show many kinds of relationships
 The classes being described often (but not always) 

map to classes in object-oriented languages
 The following symbols are used to mark class 

members:
 + Public
 - Private
 # Protected
 / Derived
 ~ Package
 * Random

 Example from Wikipedia:

https://commons.wikimedia.org/wiki/File:KP-UML-Generalization-20060325.svg


 Associations between classes can 
be drawn with a line in a class 
diagram

 Notations can be used to mark 
relationships as one to one, many 
to one, many to many, etc.

 These kinds of relationships are 
particularly important when 
designing a database



 Classes can be listed with their 
attributes

 However, there are often classes 
that share attributes with each 
other

 Some classes are specialized 
versions of other classes, with 
more attributes and abilities

 This relationship between general 
classes and more specialized 
classes is handled in Java by the 
mechanic of inheritance



 Another way of using class 
diagrams is to show that some 
objects or classes are made up 
of smaller parts represented 
by other classes

 A diamond shape is used to 
mark a class that is the whole, 
and its parts are connected to 
the diamond





 Read Chapter 2



SCAN the QR CODE to REGISTER



 Read Chapter 2: Software Processes for Wednesday
 Keep working on your projects
 SRS draft due Friday!


	COMP 3100
	Last time
	Questions?
	More on Requirements
	Verifying and validating requirements in traditional processes
	Verifying and validating requirements in agile processes
	Requirements management in traditional processes
	Book outline for an SRS
	Project 1 outline for SRS
	Requirements management in agile processes
	Requirements vs. product design
	Requirements modeling
	Kinds of requirements modeling
	UML
	Modeling
	System modeling
	UML
	Activity diagrams
	More detailed activity model
	Data-driven modeling
	Use case diagrams
	Sequence diagrams
	State diagrams
	Event-driven modeling
	Class Diagrams
	Structural models
	Class diagrams
	Relationships
	Generalization
	Aggregation
	Upcoming
	Next time…
	Slide Number 33
	Reminders

